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COMMENTS ON THE SENSITIVITY OF THE OPTIMAL COST AND THE
OPTIMAL POLICY FOR A DISCRETE MARKOV DECISION PROCESS*

ENRIQUE L. SERNIK and STEVEN 1. MARCUS**
“*Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, Texas 78712

ABSTRACT

The problem of characterizing the effects that uncertainties and/or small changes in
the parameters of a model can have on optimal policies is considered. It is shown that
changes in the optimal policy are very difficult to detect even for relatively simple models.
By showing for a machine replacement problem modeled by a partially observed, finite
state Markov decision process, that the infinite horizon, optimal discounted cost function
is piecewise linear, we find formulas to compute the optimal cost and the optimal policy,
thus providing a means for carrying out sensitivitv analyses. Exam pies are presented to
show the usefulness of the results.

Key words: Sensitivity analysis, Markov Decision Processes, Dynamic Programming.
1. INTRODUCTION

The problem of finding explicit descriptions and/or structural properties of optimal
control laws and costs for partially observed (PO) stochastic control problems has re-
ceived considerable attention in recent years (e.g., Ref. 1, 2). This is due in part to the
computational advantages that have resulted from such descriptions (e.g., Ref. 3, 4, 5),
and in part to the increasing interest in the design of adaptive control techniques aimed at
overcoming changes in the optimal law caused by uncertainties and/or small changes in
the parameters of the physical system being modeled (e.g., Ref. 6, 7, 8).

In this note we are intersted in finding how uncertainties and/or small changes in the
parameters of the model affect the optimal policy and cost of a discrete PO Markov deci-
sion process (MDP). A simple example of such a process is that associated with a
machine that produces items, namely a process that can be in either a "good" or in a "bad"
state (corresponding to whether the machine produces or needs to be replaced). Since the
state of the machine is monitored incompletely, this problem is converted to an
equivalent completely observable (CO) MD problem (see e.g. Ref. 3, or Ref. 9, chapter
3), in which the condition2] probability vector n (¢) = (n,(¢), - - - .y (1)), With x; (1)
the probability that the machine is in state i (i€ {1, --- ,N }) given past observations
and actions, provides all the relevant information to select the control action at time ¢ .

Even for this simple model, the effect that uncertainties on the parameters have on
the optimal policy and cost is not easy to determine. The complication arises due to
several reasons, including the following: (i) The optimal control action has to be specified
for each of the (uncountably infinite number of) values of n (¢). This should be contrast-
ed with the case of perfect observations where one need only compute the control for

each of the finite number of values of the states; (ii) The control process for this produc- .

tion problem takes values in a finite set (namely one can let the machine produce, and ei-
ther inspect or replace the machine), and so derivatives with respect to the control are
not defined; (iii) It is well known (Ref. 1-9) that the optimal cost for the problem con-
sidered here satisfies a functional equation, which can be solved by using the Dynamic
Programming (DP) algorithm (see Ref. 9, chapter 5). Computationally however, this is
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DoD Joini Services Electronics Program through the Air Force Office of Scientific Research
(AFSC) Contract F49620-86-C-0045.
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not an easy problem. The space in which = () takes its values is discretized by means of
a grid which has to be changed several times until one is certain that the result of (apply-
ing) the algorithm is actually a solution of the functional equation, and is not just an
artificial result of the numerical discretization (see the examples below).

We investigate the dependence of the optimal cost and the optimal policy on any of
the parameters of the model with two states before considering a more general model.
The equations involved are scalar equations since =®(¢) can be written as
®(t)=(1-p().p(t)), where p(t) is the probability that the system is in the bad state at
time ¢ given past observations and actions; p(¢) will usually be denoted by p, omitting
explicit dependence on ¢. The scalar formulation facilitates the determination of struc-
tural properties of the cost and the policy.

2. MODEL, NOTATION AND REVIEW OF PREVIOUS WORK

We denote by (x,,1=0,1, - - - } the finite state MP associated with a machine that
produces items; the state space is X = (0,1}, also referred to henceforth as {good, bad},
respectively. Denote by {u,,t=0,1, ---} the control process; &, ¢ U= (0,1,2}, also re-

ferred to as {produce, inspect, replace }, respectively. We associate a cost with each con-
trol action as follows: the cost associated with replacing the machine is denoted by R,
and the cost associated with inspection by 7. The cost associated with production is 0 if
the machine is in the good state, and C if the machine is in the bad state. We assume
that 0< C< I < R. '

At time ¢ one must decide whether to inspect the item produced or not, and whether
to replace the machine or not. If the machine is replaced it will be in the good state at
the end of period ¢. It is further assumed that no item was produced during that period.
Inspection might be carried out to determine the state of the machine, but it will not im-
ply a decision about whether to replace the machine. The observation process
{y,2=0,1, --- } takes valuesin Y = {0,1).

Assume that the probability vector p®= (pd,p?) is given, where p°=Pr{xo=i},
i=0,1, and =n(0) = p°. The machine evolves according to transition probabilities
p;; (u;) defined by p;; (v)=Pr (x,=j/x,=i,u=v). Let P(x,), u,eU, be the transition
probability matrices with entries p; (»,). The transition matrices P(u,), 4, eU, are given
by:

1-6 6 1-6 6
P(0)=P(1)=[0 1}.”(2):[1_9 9}"=0'1’“' (N

where 6 is the probability of machine failure in one time step.

The observation process is related to the state and the control processes by means of
the conditional probabilities g4 (v)=P {y.1=k/x,=i,u,=v )}, with ¢, (u, ) the entries of
the observation matrices Q(u,), 4, €U, given by:

q l1-¢
Q(0)=Q(l)=Q(2)=[,_q q }.t=0,l.--- (2)

where ¢€[0.5,1.0) is the probability of making a correct observation. The model is the
one described by Ross in Ref. 10.

We are interested in the infinite horizon case, and the objective is to find an opnmal
admissible control policy that minimizes the expected discounted cost J, (p%, given by:

Jo(P°) = Eol Z Blc (%, u4) ) (3)

=0

where Eo[.] denotes conditional expectation with respect to p°; B is the discount factor

with 05 B< 1; c(x,.u) is the cost accrued when the machine is in state x, and action
u, is selected; and g = (g )=, is an admissible policy, that is, (g )=, is a sequence of




Borel measurable maps g:[0,1) - U such that u,=g (p(t)), 4, elU, for t=0,1, --- .
If no observations are available, u, can still be written as u,=g (p (1)), % eU, and
&:[0,1] 2 U for ¢t=0,1, ---, where now p (1) is the (aposteriori) probability that the
machine is in state 1. This is because the expected cost can be expressed explicitly in
terms of p(¢). However, in this case (g )=, is a deterministic sequence since p (1)
depends only on p°, which is given, and is updated from time ¢ to time ¢+ 1 using the
transition probabilities P (.), also given. If g (.)=g(.) for all values of ¢, the policy is
said to be stationary (when computing optimal policies in the infinite horizon case, we
need only consider stationary policies; see Ref. 9, p. 225).

Define Vg(p)= ir:fJ, (p). Then Vp(p) is the expected cost accrued when an optimal

policy is selected, given that the machine starts in the bad state with probability p, and
future costs are discounted at rate . It is well known (e.g. Ref. 9, 10) that Vp(p) is the
unique solution of:

1
Ve(p)=min (Cp+B Y D (k,p,0)Vg(T (k,p,0)),
k=0

1
I+B Y D(k,p.)Va(T (k,p,1)),

k=0

1
k=0

where T (k,p,v) is the updated probability that the system is in state 1, given that %
was observed and the control applied was v. T (k,p,v) is given by
T (k,p,v)=N (k,p,v)/D(k,p,v), with N (k.p,v) = (Ny(k,p,v) ,Na(k,p,v)),
D (k,p,v)=3 N;(k,p,v), and where N;(k,p,v) represents the probability that the next

state is j givén that the outcome is & and the control applied is v (see Ref. 9, 10 for de-
tails).

We review some previous work associateu with the following two special cases of the
strictly PO (i.e., partial observations during production and during inspection) problem:
Case A: Only two actions are considered, namely U = (0,2}, and the state of the system
is not observed (i.e., the state is 'completely unobserved’) during production, that is, all
the entries in Q (0) equal 0.5; Case B: Now U= (0,1,2}, and the state of the system is
not observed during production, but perfect observatior«< (ie., the state is 'completely
observed’) are obtained during inspection, so that Q (0) . as in Case A and Q (1) is the
2-dimensional identity matrix. We recall that these two .. - are of interest since the
completely unobserved (CU) and the completely observed (Lu) cases repectively provide
upper and lower bounds for the optimal value of the cost in the strictly PO case (Ref.
11).

The first structural results associated with the optimal policy and cost for the models
described above were given by Ross (Ref. 10). Among several results, Ross gave neces-
sary and sufficient conditions for the stationary policy "produce for all values of p" to be
optimal. Ross also showed that (i) every optimal policy produces for all pe{0,0]; and
that (ii) it is optimal to replace for values of p near 1. Other results by Ross included
sufficient conditions to verify the existence of optimal policies. The conditions were stated
in terms of the optimal cost and were thus hard to verify. The characterization of the
stationary optimal policies was done by Whitc (Ref. 3). who showed that among the sta-
tionary optimal policies there is a smaller class of optimal policies, caiicd siructured poli-
cies, such that one need only look for structured policies when solving equation (4).
Wang's work (Ref. 12) was aimed at showing that a structured policy (called ‘control-
limit policy’ when only two actions are considered) is optimal for the two action, CU casc.
Wang also gave analytic expressions for computing the optimal cost and the optimal poli-
cy for this problem. Although these results can be used to show that the stationary op-
timal cost is piecewise linear, Wang did not do so, and unfortunately his results have
been referred to primarily as a "computational procedure” (see e.g., Ref. 13). Wang stu-




died a more general model for the two action, CU case than the one being treated here,
but he did not considered the case of three actions (closed loop). In a later work (Ref.
14), Wang generalized his results to the two action, CU N - dimensional (N > 2) case.

Let us point out that the previous results characterize the optimal policy and give
some properties of the optimal cost function for the problems described above, but they
do not give insight on what happens to the optimal policy or to the optimal cost if there is
uncertainty in the knowledge of the parameters of the model, or if these parameters un-
dergo (unexpected) small changes. Solving the problem again via Dynamic Programming
may not be practical for the infinite horizon case in terms of computational effort, as will
be illustrated in the examples below.

3. PIECEWISE LINEAR OPTIMAL COST

Motivated by our interest in determining the sensitivity of the optimal policy with
respect to the parameters of the model, and since the study of the functional equation (4)
provides little insight on how the optimal policy or the optimal cost change when the
parameters of the model are subject to small changes, we focused our attention on the
study of the DP (or successive approximations, Ref. 9, 10) algorithm used to solve equa-
tion (4). Specifically, we analyzed the algorithm given by:

Vi(p)=min{Cp ,I . R)

1
VE(p)=min{Cp+BY D (k,p,0) VE~' (T (k,p,0)).
k=0

1
1+BY D (k,p,)V§~ ' (T (k,p,1)),
k=0

1
R+BY D(k.p.2)VE ' (T (k,p,2))) (3)

k=0

where n represents the iteration, and V3§ (p) is the minimal cost that can be obtained
starting in state 1 with probability p and proceeding for n stages with costs discounted
by a factor B. Because of the relative simplicity of algorithm (5), and since from the
theory of contraction mappings it is guaranteed that algorithm (5) converges uniformly to
the unique solution Vg(p) of equation (4) as n -~ (see e.g. Ref. 2), we were able to
prove the piecewise linearity of the optimal cost function, and obtained analytic expres-
sions to compute the optimal cost and the optimal policy. We show this next.

Consider first Case A described above. When ¢=05 we have
D (k,p,0)= D (k,p,2) = %, T(k,p,2)=9, and T (k,p,0) becomes (Ref. 9):

T(k,p,0)=p(1-8)+6= Tp (6)

Thus, T p satisfies Tp> p for pe[0,1), with unique fixed point p = 1. From algo-
rithm (5), denote by P, (p) the function generated by Pi(p) = Cp+ BP,- T p).

k=23, -, with Pip) = Cp, and denote by R, the function generated using R, =
R + BP,‘_,(G). k=23, --,with R; = R. By applying recursively (5) one obtains that:
_ k=1 , k-1 .
Py(p)=Cp X B (1-6)+C 3 B'(1-(1-86)") (7
i=0 i=]
_ k-l .
Ri=R+C Y B (1-(1-8)) (8)

i=}

Since C < R by hypothesis, and p < 1, the first iteration of (5) gives the policy "pro-
duce for all p e[0,1]". As k increases, 1f Pi(p)# R, forall keN,and all pe [0 1],
one obtains Ross’ result mentioned above, namely, that "produce for all pe[0,1]"is the




stationary, infinite horizon optimal policy. If on the contrary P, (p) = R, for some
ke N and for some p< 1, call it o, then the optimal cost at iteration k& will be
specified by:

k-1 , k-1 .
szoﬁ‘(l—e)'wZB'(I-(1~°)') pel0,a)
i= im]
Vi (p)= k-1 . &
R+C Y B'(1-(1-86)) pela,1]

i=l

with optimal policy "produce for p € (0,0, ) and replace for p e [a,,1]". The point we
want to make is the following: for n = & + 1 (and similarily for subsequent iterations) in
order to compute Vﬁ*‘ (p) we need to perform a minimization in an interval of the form
[0,b), 0< b < 1, requiring the evaluation of V§ (T p), pe[0,b). Butsince Tp> p
for p < 1, the result of the minimization only specifies the cost function in an interval of
the form [0,7"'b) at iteration k+1. This implies the following:

(i) Since p=1 is the unique fixed point of T-!p = (p~0)/(1-0), and T"!p continues
to decrease the size of the interval of the form [0,b) as k = , there is an iteration, call
it ¢, for which this interval is smaller than [0,0) (say {0,y).Y < 0). Since T-!p< 0
for pe[0,y), the cost specified in [0,y ) in iteration / will not enter into the computa-
tion of V§'! (p) , Vi (p), - - .

(ii) To specify the cost function on the remainder of the interval, namely (T 'a,,11], al-
gorithm (5) requires a minimization of the form:

min (Cp +BR, Jau) (10)

Note that in (10) we are comparing a function associated with the produce action, given
by an affine function of p (referred to henceforth simply as a 'line segment’_in order to
facilitate the exposition), and R,,,, a constant. If C p + BR, is smaller than R,,, in (10)
(for some value of pe [T 'a@,,1]), a new line segment will appear in the description of
the cost function (for the interval p € [T~ !a, ,04.,) ). The point here is that with the ex-
ception of the line segment shown in (9), all the line segments appearing in the descrip-
tion of the cost function come from a minimization of the form (10).

In other words, from (ii), at each iteration of (5), and independently of the number

of line segments already describing the cost function in that iteration, there is at most
one new line segment appearing in the description of the optimal cost function, and from
(i), for k large enough the line segments are also leaving the problem (meaning they no
longer appear in the cost function) under the action of T-'p.
(iii) In addition, observe that the line segment that specifies the cost function at iteration
(say) k in the interval [a,b), O0< a < b < 1, specifies (with formula updated by the
iterative procedure) the cost function at iteration k + 1 in the interval [T"'a,T"'b), and
since for 0< a< b< 1 we have that T-'6-T"'a=(b-a)/(1-08)> b-a, the line
segments leaving the problem have finite nonzero length.

Finally, if we call a’ the limit as k -5« of a, (whenever it exists), then there is a
finite natural number m . such that T m“’a' is less than zero (this is clear because
T-'p< p for 0< p <1, and the fact that p=1 is the only fixed point of T-!'p). The
same is true for each of the a,, k € N. This observation, together with remarks (i), (ii)
and (iii) above, means that all the line segments that appear in the description of the cost
function disappear in a finite number of iterations.

We introduce the following notation. Let W§ (p) = V§ (p)lio,q,), that is, W§(p)

denotes the restriction of the optimal cost function at iteration & to the interval {0,a,).
Observe that in this notation R, can be interpreted as the restriction of V§ (p) to the in-
terval (o, ,1]. Let Wp(p) and R be the limits (whenever they exist) of W§ (p) and R,
respectively, as k — . Then Wp(p) (respectively R ) denotes the restriction of the
infinite horizon, optimal discounted cost function Vp(p) to the interval [0,a°) (respec-




tively {a®,1]).

One of two things can happen so that convergence is achieved: either (a) The line
segments enter into the problem at a higher rate than that at which they disappear from
the problem, and hence the line segments accumulate, meaning that in the limit as
k -, Wa(p) will not be described by a finite number of line segments; or else (b) The
rate at which the line segments enter the problem is the same as that at which they leave
the problem, and hence a finite number of line segments completely describe Wy(p).
We have the following Proposition. '

Proposition 3.1: For the open loop model described above in Case A (two actions,
ie., U = {produce,replace), and the state of the system is CU during production),
W (p), associated with the stationary, infinite horizon optimal policy is piecewise linear.
Since R is constant, this means that the infinite horizon, optimal cost function Vg(p) is
piecewise linear.

Proof: By Lemma 3.2 in Ref. 10, we have that every optimal policy produces for all
p €[0,68]. Hence we consider the following two cases:

(i) If a” = 0, then T-'a" = 0, and the claim here is that the optimal cost Vg(p) associ-
ated with the stationary, infinite horizon optimal policy "produce for p € [0,8] and re-
place for pe(0,11", is given by:

Cp+BR pe[0,0]
Vﬂ(P)={R— pe(6,1] (11)

For if not, assume that Wg(p) is an arbitrary limit of piecewise linear functions. Denote
by f(p) the optimal cost function that is an arbitrary limit of piecewise linear functions
for pel[0,a"], and a constant for pe(a’,1]. Then from (4) we have that:
f(p)=min {(Cp+Bf(Tp),R+PBf(6)}. That is, by Lemma 3.2 in Ref. 10, and for
0< p<s o' =0, we have f(p)=Cp+Bf(Tp). Since f(Tp)=R + pf(e) is con-
stant (say K ) for 0< p< o= 6, we have f(p)=Cp+ K for pe[0,a 1. Therefore,
if " = @, the infinite horizon, optimal cost is given by (11), which means that there is
only one line segment describing Wg(p).
(ii) Since the case for which o’ = 1 was considered by Ross in Ref. 10, assume that
8< o < 1, and that convergence takes place as described in (a) above. As explained in
remark (ii) above, the line segment that appeared in the problem most recently specifies
the cost function in the interval [T 'a’,a’). Since a* > T~!'a’, this line segment has
finite nonzero length. Now assume that for p ¢ [0,T"!'a") the cost function is arbitrary.
Denote by f(p) the optimal cost function that is an arbitrary limit of piecewise linear
functions for pe[0,T 'a’), an affine function of p for pe[T 'a’,a"), and constant
for pela’,1]. From (4), f(p) is given by f(p)=min (Cp+Bf(Tp).R+Bf(8)}.
Since for pel[T(T7'a’"),T'a") the optimal policy is to produce,
fp)=Cp+Bf(Tp) for pe(T(T "), T7"). But for
pe(T™(T'a’), T 'a") we have Tpel[T 'a",a"), and so f(Tp) is the above
mentioned segment in [T-!'a’, «") with finite (nonzero) length, which in turn means
that f(p)=Cp+Bf(Tp) is also an affine function of p, and since
T 'a" > T7}(T"'a"), it also has a finite (nonzero) length. By remark (iii) above, we
have that o' -T"'a"> T7!a'-T"!(T"'a"). Therefore, continuing the procedure just
described, we can see that there is a uniform lower bound (different from zero) for the
length of all the line segments which is independent of the iteration because T~!p is in-
dependent of the iteration. Taking into account the previous observations, we conclude
that this uniform lower bound for the length of the line segments implies an upper
bound in the number of line segments describing V(p). QED

At this point the following remarks are in order:
(i) To the best of our knowledge, the piecewise linearity of the optimal cost function in
the infinite horizon model for the cases described above has not been reported previously
(see for example all the references cited so far, and recent reviews like Ref. 16). Its use-
fulness will be apparent in the sequel.




(ii) Although the two action, CU model may be of limited interest in practice (namely, it
may only be used in some replacement models in which the equipment is subject to
breakdowns but no measurements are available, and therefore only open loop control is
applicable), its importance here resides in that the insight obtained by its study allowed us
to perfo:m a similar analysis (and also prove the piecewise linearity of the optimal cost
function) for the three action, closed loop case.

(iii) The analysis of the successive approximations algorithm for the case of three actions
is not trivial. As pointed out in Ref. 15, p. 29, a policy can appear at any time during the
iterative procedure, yet fail to be optimal for the infinite horizon case. Furthermore, it
might also happen that a policy appears during some iteration, does not appear in the
(e.g., one hundred) subsequent iterations, and reappears later (or never reappears),
meaning that a policy structure which is not any longer optimal after some finite iteration
k € N, cannot be eliminated as suboptimal, and so, estimation of the minimum number
of iterations required (for example in algorithm (5)) to guarantee that an optimal policy
for the n® (finite) horizon is also the optimal policy for the infinite horizon case,
remains an open problem (Ref. 15).

For the sake of brevity, we will not go into the details of the three action, closed loop
problem, since it requires a lenghty analysis of the successive approximations algorithm
(5). However, we have studied the algorithm (5) and shown that some policy structures
cannot occur at all during the iterative procedure (e.g., there is not a "produce-inspect”
policy), and that the occurrence of others do not affect the stationary, infinite horizon
policy structure (Ref. 17).

With these results we were able to show that the infinite horizon, optimal cost func-
tion in the three action, closed loop problem is piecewise linear, and were able to develop
analytic expressions (equivalent to those of Wang in Ref. 12 for the two action, CU case,
and new ones for the three action, closed loop case) for the costs and the structured op-
timal policies for Cases A and B (namely, policies that as a function of p have the char-
acterization: "there exist three numbers p;, i = 1,2,3, 8 < p; £ p, € ps £ 1, such that
it is optimal to produce for 0 < p < p, (0< p < p, if p;=0) and p, € p < p,, it is
optimal to inspect for p, € p < p,, and it is optimal to replace for p, < p < 1" see
Ref. 3, 10 for detailed analysis). This in turn allows us to avoid the computational bur-
den described in Section 2 when solving the control problem: in particular, the results al-
low us to perform a sensitivity analysis of the optimal policy with respect to any of the
parameters of the problem, as will be illustrated in the examples ahead.

Once it is established that only a finite number of line segments is required to com-
pletely describe the infinite horizon optimal cost function, algorithm (5) can be used to
find analytic expressions to compute the cost and the policy structure. Since the impor-
tance of these formulas reside in their use to perform sensitivity analyses of the optimal
cost and policy, we illustrate this next with some examples.

4. EXAMPLES

Example 1: Consider the closed loop problem with the following data: B=0.985, 6= 0.1,
C=40, I =556 and R =10.0. The stationary, infinite horizon optimal policy is: "pro-
duce for pe(0,0.5145193) and p £10.5369462,0.6070793) , inspect for
p€[0.5145193,0.5369462) and replace for p€[0.6070793,1]", and the associated optimal
cost is given by:




23.33618p + 151.88782
21.81182p + 152.01965
20.09230p + 152.32544

p €[0.0000000, 0.0864824 )
p€e[0.0864824,0.1778342)
p€(0.1778342,0.2600507)

18.15262p + 152.82985 p €[0.2600507 , 0.3340457 )
15.96460p + 153.56075 p €10.3340457,0.4006411)
13.49645p + 154.54959 p €[0.4006411,0.4605770)
10.71230p + 155.83191 p £[0.4605770,0.5145193)
Va(p) = 1 (12)

7.57168p + 157.44782 p€[0.5145193,0.5369462 )

7.54600p + 157.46161
4.00000p + 159.45950

p €[0.5369462,0.5634215)
p€[0.5634215,0.6070793 )

161.88782 p €[0.6070793, 1.0000000]

Observe that equation (12) is a closed form formula for the infinite horizon discounted
cost. Also, note that there are 7 line segments describing the optimal cost function for
p £[0.0,0.5145193), and 2 line segments describing the optimal cost function for
p € [0.5369462,0.6070793) . Now change 6 from 0.1 to 0.10005. The optimal policy
structure now changes from 4 to 2 regions. In this case a = 0.60721, and the optimal
cost is given by: :

Ve(p) = 9

.

23.3210p + 151.9233
21.7959p + 152.0562
20.0754p + 152.3632
18.1346p + 152.8691
15.9452p + 153.6017
13.4753p + 154.5927
10.6890p + 155.8774
7.5458p + 157.4962
4.0000p + 159.4945

161.9233

p €[0.00000,0.08713)
pe[0.08713,0.17846)
p € [0.17846 , 0.26065)
p €10.26065,0.33463 )
pe(0.33463,0.40120)
p e[0.40120,0.46111)
pel0.46111,0.51502)
p €[0.51502, 0.56355)
p €[0.56355,0.60721)

p €(0.60721, 1.00000)

(13)

Note how a relatively small change in the value of 6 resulted in a significant change in
the optimal policy structure. To the best of our knowledge, changes in the optimal policy
due to such small changes on the parameters of the model could not be studied before,
because the necessity of discretization often does not permit high confidence in the
results obtained by following the DP algorithm. We are able to study small changes in the
parameters of the model because of the analytic expressions found as a consequence of
the piecewise linearity of the optimal cost.

Now consider the case when 6 changes to 6=0.09. The optimal policy is: produce
for pe[0,0.4874221) and p €[0.5772912,0.5773791), inspect for
p €(0.4874221,0.5772912), replace for p€[0.5773791,1], and the optimal cost is given by:




25.71507p + 143.96777 p € (0.0000000 , 0.0080949 )
24.22611p + 143.97982 p €[0.0080949,0.0973664 )
22.56497p + 144.14156 p€(0.0973664 ,0.1786034)
20.71174p + 144.47256 p £[0.1786034 , 0.2525291 )
18.64421p + 144.99467 p €[0.2525291,0.3198015 )
16.33760p + 145.73232 p €(0.3198015,0.3810193)
13.76427p + 146.71281 pe[0.3810193,0.4367276)

Va(P) = 1 10.89336p + 147.96661 p€[0.4367276,0.4874221) (14)
7.69048p + 149.52777 p €10.4874221,0.5772912)
4.00000p + 151.65825 pe[0.5772912,0.5773791)
153.96777 p €0.5773791 , 1.0000000 ]

-

The optimal policy for this example still has four regions if 6 changes to any value in
[0.09,0.10). However, note that the number of line segments describing the optimal cost
function changes for different values of 8. Also, note the size of the interval for which
the line segment with formula 4.0p + 151.65825 is specified in (23). We compared these
results with those given by the successive approximations algorithm. The results were
very difficult to obtain by using the successive approximations algorithm. Unless one
knows in advance the structure of the stationary, infinite horizon optimal policy, it is very
difficult to decide when the optimal policy has been reached (and hence to Jdecide when to
stop the computational procedure), even after several choices of the grid have been test-
ed (with the corresponding time consumption involved).

It is clear that the same kind of analysis carried out here can be done for any of the
other parameters of the problem (ie., B, R, I and C). Thus the equations found in
this work can be used to obtain insight in the way the system responds to uncertainties,
and therefore adaptive policies can be designed (for example, to modify the value of
some of the parameters to compensate for an undesired change in some other parame-
ters) so that the system continues to perform in a preselected satisfactory way.

Example 2: Now consider the open loop case. Let B=0.9999, 6=0.1, C=4.0 and
R =10.0. Using algorithm (5) with a grid of 1001 poi-ts in the interval [0,1], one ob-
tains: for n= 1000, o' =0.609 , R =2272.10; for n= 10000, «"=0.588 , R = 15077.17; and
for n=15000, a’ = 0.601 , R = 18528.28. We note that the last case mentioned above took
52 minutes of CPU (as compared to less than a second when using the expressions
derived here, for the same computer and computer load), and although the values ob-
tained may suffice when solving the (initial) control problem (actual values, obtained with
the analytical expressions, are R = 23882.62 and o’ = 0.597167) it is apparent that a sensi-
tivity analysis would be not only expensive in terms of computer time (this is so for any
computational algorithm since p takes uncountably many values, and we are dealing with
the infinite horizon problem), but also hard to perform in the sense of detecting the actu-
al effect of the uncertainties on the optimal cost and policy.

5. CONCLUSIONS

The analysis of the successive approximations algorithm used to solve the functional
equation satisfied by the optimal cost associated with the problems described in Section 3,
allowed us to prove the piecewise linearity of the optimal cost function, and to develop
analytical expressions to compute both the infinite horizon optimal cost and the station-
ary, infinite horizon optimal policy structure. These results, in turn, permit the perfor-
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mance of a sensitivity analysis for the optimal cost and policy with respect to any of the
parameters of the problem.

The examples in Section 4 suggest that for the study of changes in the optimal policy
due to small changes in the parameters of the model, better results can be obtained if
structural properties of the policies and the cost are taken into account in the design of
computational procedures. Since the strictly PO case is difficult to treat analytically, the
study of structural properties of the optimal cost and the optimal policy for special cases
of the strictly PO case, like those considered here, is justified as a way to approach the
strictly PO problem.

The development of similar results for more complex problems like the study of the
strictly PO case, higher dimensional models, and the average cost case, is currently being
investigated.
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